

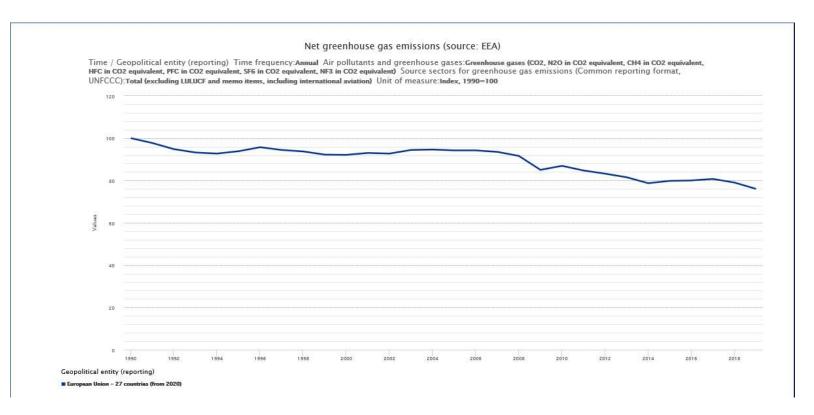
An RRI Indicator System for Supporting Renewable Energy Innovation

Eu-SPRI 2022: Challenging Science and Innovation Policy Utrecht, 1-3 June 2022.

<u>Tobias Buchmann</u> (ZSW), <u>Patrick Wolf (ZSW)</u>, Matthias Müller (University of Hohenheim), Marion Dreyer (Dialogik), Frank Dratsdrummer (Dialogik) and Bianca Witzel (Dialogik)

Observation

- Are renewable energy technologies uncontroversial? Not quite...
- Raw materials: availability and mode of extraction
 - LIBs contain critical metals: cobalt and graphite → supply risk, risk of price increase, competing use
 - The choice of mines is limited (child labor?)
- Protection of the environment and species
 - The recycling rates are still very low
 - Production of lithium: vast amounts of water, environmentally harmful chemicals, evaporation ponds and processing plants consume land and chemical waste is not disposed of in an environmentally friendly manner.
 - Safety risk
- Socio-Economic: Unequal distribution of benefits / burdens, Jobs
 - Job losses in certain industries and regions?
 - Low-wage labor
- → Issues to be taken into consideration (early) in the innovation process.



Observation

- Small reductions in greenhouse gas emissions
- Energy transition innovations have to:
 - be effective
 - experience a high level of social acceptance
 - − → implemented widely

Problem

- Innovations → positive perception
 - long-term prosperity
 - support greenhouse gas reductions
- However, undesirable consequences:
 - environmental destruction, e.g. raw materials for batteries
 - violate human rights
 - negative employment effects
 - undesirable distributional effects (Giuliani, 2018)
 - → limits their <u>societal benefits and social acceptance</u>
 - → "innovation is neither inherently good nor self-regulatory"

Solution approach

- RRI indicator system:
 - Raise problem awareness → adapt organizational routines (innovation processes)
 - Important because:
 - (1) Decisions in the R&D process lock-in future environmental and social impacts (Bhander et al., 2003);
 - (2) early in the innovation process, more flexibility for environmental and social concerns (Owen et al., 2013);
 - (3) Separatio of environmental and social <u>impact research</u> from the innovation process, assessment and regulation is reactive only (Owen and Goldberg, 2010; Wender et al., 2014).
- → Implement an innovation process that is more aligned with RRI criteria.

Solution approach

- Challenges and limitations:
 - High degree of uncertainty regarding the outcome, "true uncertainty" (Knight, 1921)
 - Partly chaotic, non-linear and spontaneous process
 - "Traditionally", RRI has been applied to potential breakthrough technologies, e.g. nanotechnology
 - RRI often neglects innovation as a systemic phenomenon (Owen, 2019)
- → Possibilities of process planning and estimation of consequences are limited
 - However, by applying an RRI indicator system:
 - implement processes in such a way as to increase the <u>probability</u> that an innovation process and its outcome will be more socially desirable.

RRI operationalization

Previous work

"One might wonder how what is supposedly one concept can lead to such diverse constructs."

van de Poel (2019)

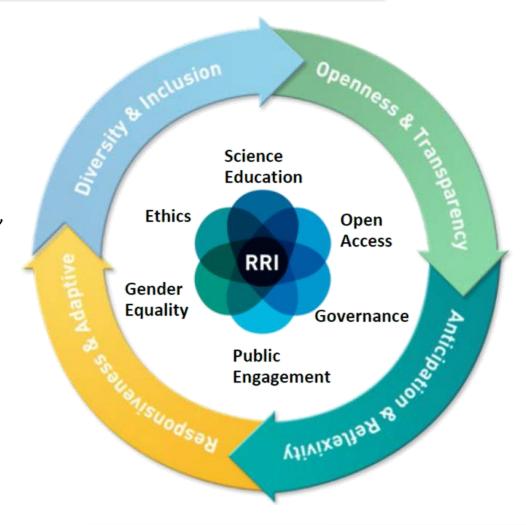
- To assess the RRI-alignment of innovation processes and resulting products we require a suitable operationalization approach
- There are already different sets of indicators in the RRI context, which vary significantly in their characteristics
 - Different goals
 - Different units of assessment
 - Different types of assessment

Reference	Unit of assessment	Assessor	Aim of assessment	Based on	Indi- cators	Type of measurement
Ravn, Nielsen and Mejlgaard (2015)	Country	Independent assessor	Monitoring; comparison	EU Keys	36	Quantitative
Ravn, Nielsen and Mejlgaard (2015)	Country	Independent assessor	Monitoring; comparison	EU Keys	36	Quantitative
Strand et al. (2015)	RRI initiatives	Independent assessor	Monitor and assess the impacts of RRI initiatives	EU Keys	83	Quantitative
Flipse et al. (2015)	Project (within a company)	Self- assessment	Monitoring; decision support for managers	AREA Framework	30	Qualitative
Stahl et al. (2017)	Company	RRI researchers; Self- assessment	Assessing RRI level, monitoring	AREA Framework	14	Qualitative
Heras & Ruiz- Mallén (2017)	Research/Teachi ng Institutes	Self- assessment	Monitoring; comparison	EU Keys & Own	86	Qualitative
Otero- Hermida & García-Melón (2018)	Research Institutes	Self- assessment; Independent assessor	Monitoring	EU Keys (Gender Equality)	23	Quantitative
Tharani et al. (2019)	Company	Self- assessment	Learning	AREA Framework	43	Qualitative
Verburg, Rook, and Pesch (2019)	Employee (in a company)	Self- assessment	Assessing RRI level	AREA Framework	7	Qualitative
Yaghmaei et al. (2019)	Project	Self- assessment	Monitoring	AREA Framework	43	Qualitative
Nazarko (2020)	Company	Self- assessment	Monitoring; decision support for managers	EU Keys	53	Qualitative/ Quantitative

RRI operationalization

Problems of existing indicator sets

- Existing preliminary work that has created a basis for indicator development has not yet been taken up
- Reliability problems (van de Poel, 2019)
 - Problem is common in RRI context as attributes are often not objectively measurable
 - Van de Poel (2019): The subjectivity of the assessment can be reduced by providing a 'rubric' that offers guidance on how to score questions or items
- Lack of contextual indicators (Monsonís-Payá et al., 2017)
 - Existing indicator sets are rigid and lack contextual weighting
- Lack of a systemic structure
 - Largely individual, isolated indicators
 - Previous approaches are indicator sets rather than indicator systems
- → Aspects we want to consider when creating the RRI Indicator System



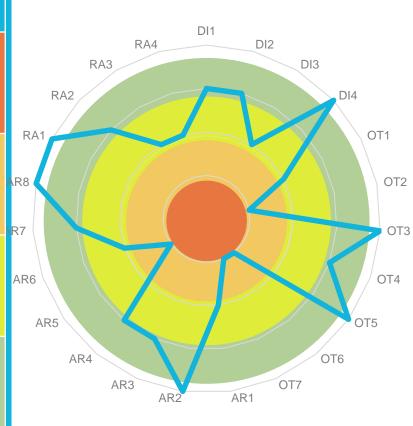
Process indicators

- The quality criteria developed in the RRI Tools project (Kupper et al, 2015) form the basis for the development of the process indicators.
 - The quality criteria represent essential features of research and innovation practices that should be taken into account in assessment, monitoring or (self-)evaluation tools in the RRI context
 - For the creation of the indicator sets, quality criteria were examined and (where possible) clustered.
 - The indicator specifictions are taken from the literature or were formulated based on guiding questions formulated in the RRI Tools project

Process indicators

	Diversity and Inclusion
DI1	Stakeholder engagement in the innovation process
DI2	Regularity and systematicity of stakeholder engagement
DI3	Diversity of stakeholder engagement methods
DI4	Institutional diversity
	Openness and Transparency
OT1	Information on practice details (Objectives, Methods, Finances and Interests) regarding R&D
ОТ2	Policies on open access and information sharing
ОТЗ	Attribution of roles and influence of involved actors and stakeholders
OT4	Dissemination and Sharing of preliminary, intermediate and final results
OT5	Identification of uncertainties and limitations
ОТ6	Lines of delegation, ownership and accountability
OT7	Openness to critical scrutiny

	Anticipation and Reflection
AR1	Analysis of background and current situation
AR2	Cosideration of diverging problem definitions
AR3	Anticipating potential futures
AR4	Consideration and Monitoring of ethical aspects and values
AR5	Consideration and Monitoring of legal aspects
AR6	Consideration and Monitoring of societal aspects and values
AR7	Consideration and Monitoring of environmental aspects and values
AR8	Exploration of underlying values, assumptions and choices
	Responsiveness and
	Adapive Change
RA1	Incorporating feedback
RA2	Ability to change after internal reflective practice and external feedback
RA3	Implementation of evaluation strategies
RA4	Actor's ability to adapt their role and responsibilities


RA1 Incorporating feedback

Incoming feedback is not incorporated into the R&I process

Incoming feedback is incorporated without clear methods or procedures

There are consistent ideas about how to incorporate feedback

Methods for incorporating feedback have been explored and implemented into the R&I process.

Product indicators

- The RRI product dimension captures products in relation to overarching and specific normative anchor points (von Schomberg, 2013)
- According to von Schomberg, these normative anchor points should be:

Ethical acceptability	Sustainability	Social desirability
Compliance with the fundamental values of the EU charter on fundamental rights (right for privacy, etc.)	Contributing to the EU's objective of sustainable development.	Meeting the normative anchor points of the Treaty on EU

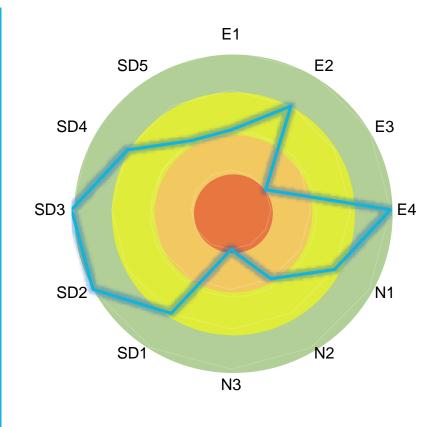
Product indicators

• 12 product indicators assigned to 3 dimensions

	Ethical acceptability
E1	Dignity rights evaluation
E2	Freedom rights evaluation
E3	Equality rights evaluation
E4	Solidarity rights evaluation

	Sustainability
S1	Economic Sustainability
S2	Social Sustainability
S3	Environmental Sustainability

	Social desirability
SD1	Influence on quality of life
SD2	Protection of human health
SD3	Protection of the environment
SD4	Social justice
SD5	Scientific and technological progress


SD2 Protection of human health

The product causes significant damage to human health

The product is likely to cause damage to human health

There is a potential risk of minor damage to human health from the product.

There is no or hardly any risk that the product has a negative influence on human health.

Indicator system conception

Outlook

- Aspects to consider:
 - Literature refers to the interrelatedness between product and process levels (von Schomberg, 2013; Kupper at al., 2015)
 - Rigidity of indicators: At least on process level, not all indicators might be of the same relevance
 - Indicator set is still rather generic → Contextual situation should be taken into account (Wickson & Carew, 2014)
- Possible solution: contextual weighting of process indicators
 - Weighting based on a comparisons between all possible pairs of individual indicators for each dimension
 - → Analytic Hierarchy Process (AHP) as possible approach

Thank you for your attention!

Conclusion & Outlook

- Acceptance problems with renewable energy technologies can hinder the achievement of current climate targets and also the success of the energy transition
- Although we cannot create acceptance per se, RRI might help to design processes in such a way as to increase the
 probability that an innovation process and its outcome will be socially desirable and accepted
- A tool is required to check the RRI-conformity of both innovation processes and products
- Existing operationalisation approaches form a good basis for the development of a suitable indicator system
- The operationalisation approach presented here builds on this and is intended to support the integration of the RRI
 concept more strongly into research and development activities in the future.

